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Convection in a self-gravitating spherical shell is simulated numerically for Prandtl numbers between 10 and
0.06. This geometry introduces asymmetries between the boundary layers whose influence on the scaling
properties of the Nusselt and Reynolds numbers is investigated. The observed Prandtl number dependences are
compared with predictions from mixing length theory and more recent theories which describe the ‘‘hard
turbulence’’ regime of convection.@S1063-651X~96!03605-7#

PACS number~s!: 47.27.Te, 92.60.Ek

Convection at high Rayleigh numbers~Ra! has received
much interest in the recent past due to the discovery of sev-
eral simple scaling relationships between relevant quantities,
and a classification of turbulent states according to statistical
properties into ‘‘soft’’ and ‘‘hard’’ turbulence@1#. Perhaps
the most notorious of the scaling laws is the dependence of
the Nusselt number~Nu! on Ra, which behaves as Ra2/7. This
observation contradicts an early theory according to which
the boundary layers are marginally stable@2#. The 2/7 law
could be accounted for by a scaling theory based mostly on
dimensional arguments@3#. Further experiments however re-
vealed the existence of a large-scale flow which was only
taken into consideration by a later theory@4#. There is evi-
dence that the 2/7 law even holds when gravity and the ap-
plied temperature gradient are perpendicular to each other
@5#. It therefore becomes interesting to inquire under which
conditions this scaling is violated. The behavior of Nu is
connected to the variation of the circulation velocity. It also
seems promising to study the modifications of the situation
realized in laboratory experiments which might influence the
scaling properties of this circulation in order to investigate its
nature.

While the Ra dependence of convection has been thor-
oughly studied both experimentally and numerically, much
less is known about the Prandtl number~Pr! dependence@6#.
Experiments of course have to rely on available fluids, but in
numerical work, Pr can conveniently be varied.

This paper presents results on convection in a self-
gravitating spherical shell with a special emphasis on the Pr
dependence. Comparison will be made with experiments in
planar geometry. Convection in a spherical shell is of obvi-
ous relevance to geo- and astrophysics. From a more funda-
mental point of view, the problem sheds light on the influ-
ence of asymmetries between the hot and cold surface: In a
shell, the inner~hot! surface is of a smaller area than the
outer ~cold! boundary. Also, the radius of curvature of the,
say, inner sphere introduces a new length scale in addition to
the separation of the hot and cold boundaries. In a self-
gravitating fluid, gravitational acceleration increases with ra-
dius, creating an additional asymmetry. Previous numerical
studies of convection in spherical shells@7# have focused on
high Pr and emphasized the flow patterns, whereas scaling
relations received little attention.

Only an overview of the numerical method is given here
since full details will be presented in a forthcoming publica-

tion @8#. The model treats a fluid contained in a spherical
shell of inner and outer radiir i andr o with r i /r o50.4. This
ratio has been chosen to agree with the geometry of the
earth’s liquid core. Gravity is assumed to vary linearly with
radius corresponding to an inner core of the same density as
the fluid. The boundaries are impermeable, no slip and at
constant temperatures. Convection is described in the
Boussinesq approximation by Eqs.~1!–~3! for the velocityu
and the temperatureT:
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The problem has been made nondimensional by using the
gap widthd5r o2r i as the length scale,d2/n as the time
scale, and PrDT as the temperature scale, where the Prandtl
number Pr is defined by Pr5n/k, n andk being the momen-
tum and thermal diffusivities.DT is the temperature differ-
ence between the inner and outer spheres. The Rayleigh
number Ra is given by

Ra5
goaDTd3

kn
, ~4!

with go being the gravitational acceleration at the outer sur-
face anda the thermal expansion coefficient. The tempera-
ture is decomposed asT5Ts1Q whereQ stands for the
temperature deviation from the pure conduction profileTs ,

Ts52
1

Pr

12r i /r

12r i /r o
. ~5!

The solenoidal velocity field is written in terms of the poloi-
dal and toroidal scalarsv andw

u5“3“3~vr !1“3~wr !. ~6!

The resulting equations forv, w, andQ are solved with a
pseudospectral method using Chebyshev polynomials for the
radial direction and spherical harmonics for the angles. Time
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stepping is performed with the Adams-Bashforth scheme for
the buoyancy and advection terms coupled to a Crank-
Nicholson step for the diffusion terms. The maximum reso-
lution used in this work was 65 radial collocation points and
spherical harmonics of an order up to 64, corresponding to a
total of 5.43105 grid points. The simulation was restricted to
flows symmetric to a meridional plane.

A summary of the data to be discussed is given in Table I.
Figure 1 shows the Ra dependence of Nu for Pr50.1, 1, and
10. The onset of convection occurs in this model at Ra

52847. Figure 1 also includes the experimentally deter-
mined Nu~Ra! at Pr50.7 in a cell of aspect ratio 6.7@9,10#,
which follows a Ra2/7 scaling at Ra.53103. It is seen from
Fig. 1 that the scaling in the spherical model deviates signifi-
cantly from the one observed in planar convection and that
the exponent in the former is less than 2/7~approximately
0.24!.

Figure 2 shows the Reynolds number~Re! for the spheri-
cal model as a function of Ra. Re was computed with the
maximum value of the rms of the radial velocity fluctuations

TABLE I. Pr, Ra, number of radial collocation pointsnr , maximum order of spherical harmonicsL, Nu,
Re, and boundary layer thicknessesD normalized by the shell thicknessd ~subscriptsi ,o denote inner and
outer boundary, subscriptsv,T denote velocity and temperature layer! for all calculations. Runs at different
resolutions are compared at Ra583104 for Pr50.1, 1 and 10. Errors can be estimated from results obtained
by averaging over different stretches of time, starting from different initial conditions and using different
resolutions. The errors on Nu are typically a few units on the last digit given in the table~but less than60.1!,
at most 10% on Re and about60.015 on the boundary layer thicknesses. At lower Pr, a higher Ra needs to
be reached before the temperature profile is significantly disturbed from its static shape@Eq. ~5!#. For this
reason, the error onDo,T is about60.05 at Ra58•104, Pr50.1 and 0.06. Values forDi ,T or Do,T are only
given if a boundary layer can be clearly discerned at the inner or outer sphere.

Pr Ra nr L Nu Re Di ,v/d Do,v/d Di ,T/d Do,T/d

0.06 8•104 33 64 2.15 264 0.103 0.097 0.187 0.224
0.1 4•103 33 32 1.0559 19.5 0.178 0.177
0.1 5•103 33 32 1.1173 29.3 0.180 0.154
0.1 1•104 33 32 1.39 70 0.161 0.133
0.1 2•104 33 32 1.74 102 0.142 0.135 0.271
0.1 5•104 33 32 2.05 147 0.117 0.121 0.194
0.1 8•104 17 32 2.26 182 0.110 0.117 0.176 0.227
0.1 8•104 33 32 2.31 180 0.109 0.126 0.175 0.299
0.1 8•104 33 64 2.27 190 0.120 0.105 0.169 0.246
0.1 1•105 33 32 2.37 197 0.108 0.109 0.164 0.266
0.3 8•104 33 32 2.54 81 0.130 0.127 0.151 0.187
0.6 8•104 33 32 2.75 50 0.137 0.137 0.138 0.157
1 4•103 17 32 1.276 3.07 0.189 0.210
1 5•103 33 32 1.435 6.36 0.191 0.207
1 1•104 33 32 1.833 11.9 0.19 0.187 0.252
1 2•104 33 32 2.033 13.9 0.183 0.167 0.226 0.247
1 5•104 33 32 2.546 25.6 0.163 0.157 0.156 0.177
1 8•104 17 32 2.85 33.2 0.147 0.147 0.136 0.147
1 8•104 33 32 2.88 33.3 0.145 0.145 0.133 0.144
1 8•104 33 64 2.90 34.0 0.143 0.148 0.127 0.157
1 1•105 33 64 3.0 37.4 0.138 0.142 0.118 0.144
1 2•105 33 64 3.6 52.7 0.119 0.120 0.0973 0.111
1 4•105 33 64 4.05 71.8 0.109 0.101 0.0843 0.0827
1 8•105 65 64 5.0 100 0.093 0.090 0.069 0.062
3 8•104 17 32 2.84 11.7 0.163 0.147 0.138 0.127
6 8•104 17 32 2.82 6.32 0.173 0.161 0.138 0.127
10 4•103 17 16 1.298 0.490 0.195 0.211
10 5•103 17 16 1.461 0.69 0.196 0.207
10 1•104 17 16 1.882 1.32 0.194 0.197 0.265 0.301
10 2•104 17 16 2.246 2.12 0.190 0.186 0.201 0.209
10 4•104 17 32 2.47 2.68 0.185 0.188 0.169 0.173
10 8•104 17 32 2.82 4.0 0.175 0.171 0.139 0.128
10 8•104 33 32 2.82 4.0 0.175 0.171 0.137 0.128
10 2•105 17 81 3.50 6.63 0.168 0.163 0.106 0.111
10 4•105 17 81 4.03 9.59 0.160 0.156 0.090 0.092
10 8•105 17 81 4.85 13.8 0.158 0.156 0.079 0.077
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averaged over a spherical surface and time. This maximum
occurs atr /d51.160.05 independently of Ra and Pr. The
solid lines in Fig. 2 correspond to an exponent of 0.5, which
is the exponent found for a best fit to the Pr51 data. These
lines fit all results to within errors, although the exponent of
the best fit to the data varies from 0.53 for Pr510 to 0.47 for
Pr50.1.

In order to further explore the Pr dependence, an addi-
tional series of runs was performed at a constant Ra of
83104, which was chosen to lie within the range of validity
of the power laws in Figs. 1 and 2. Nu and Re are given as a
function of Pr in Fig. 3. Both quantities indicate a change of
regime around Pr51, where the Nu goes through a weak
maximum and appears to asymptote to a constant at a high
Pr. Re is decreasing with a larger exponent at Pr.1 than at
Pr,1. At this particular Ra, states at Pr,1 are chaotic or
turbulent, states at Pr51 and 3 are oscillatory, whereas flows
at Pr56 and 10 are steady.

The asymmetry between the inner and outer surfaces
leads to a dramatic asymmetry in the temperature profile

with a larger temperature drop at the inner boundary. The
temperature at midshell normalized by the applied tempera-
ture difference Tc/DT varies from 20.82 at Pr50.06,
Ra58•104 to 20.88 at Pr510, Ra583105. In this second
case, only 12% of the total temperature drop occurs at the
outer boundary. The general trend is thatTc/DT decreases
with increasing Ra and Pr.

Next we investigate the behavior of the temperature and
velocity boundary layers. The boundary layer thicknesses are
determined by locating the radius at which the temperature
and horizontal velocity fluctuations averaged over a spherical
surface have a local maximum. Their variation with Pr and
Ra are shown in Figs. 4 and 5. The thermal boundary layer
thickness exceeds the viscous one at a low Ra and Pr. The
thicknesses of the inner and outer viscous layers are nearly
equal at all Ra and Pr. The local Reynolds number of the
inner velocity boundary layer exceeds by typically 20% the
one at the outer sphere. The local Rayleigh number of the

FIG. 1. Nu as a function of Ra for Pr50.1 ~triangle down!, 1
~diamonds!, and 10~triangle up!. The circles are experimental mea-
surements on a cell of aspect ratio 6.7 at Pr50.7 ~numbers taken
from Ref. @10#!.

FIG. 2. Re as a function of Ra for Pr50.1 ~triangle down!, 1
~diamonds!, and 10~triangle up!. The straight lines correspond to an
exponent of 0.5.

FIG. 3. Re as a function of Pr at Ra58•104. The straight lines
correspond to exponents20.73 ~low Pr! and20.92 ~high Pr!. The
inset shows the variation of Nu.

FIG. 4. Variation of the boundary layer thicknessesD, normal-
ized by the shell thicknessd, with Pr at Ra583104. The cross and
plus represent the thermal boundary layer thickness at the outer and
inner sphere, respectively. Diamonds and squares represent the vis-
cous boundary layer thickness at the outer and inner sphere, respec-
tively.
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temperature boundary layers is always less than 150, i.e., far
from critical.

Asymmetric thermal boundary layers have been studied
experimentally by Wu and Libchaber in non-Boussinesq
convection@11#. In that case, the thermal boundary layers
scales associated with the boundary layers~kn/gal3, where
l is the boundary layer thickness! is independent of Ra. This
does not happen in the spherical model, nor does any other
of the simple conditions proposed in Ref.@11# hold at all Ra
and Pr.

Let us discuss a few theories originally developed for the
planar geometry. It has been proposed@3,12# that Re is con-
nected to the free fall velocity (gadu)1/2 whereu is a char-
acteristic temperature scale. If we use the applied tempera-
ture differenceDT for u, we obtain Re}Ra1/2Pr21/2. An
alternative is to use the rms of the temperature fluctuations in
the center. For numerical purposes, less noisy data are ob-
tained if we use the temperature fluctuations averaged over
the entire shell. This quantity, normalized byDT, shows very
little Pr dependence~Pr2a with a,0.07!. We conclude that
the free fall hypothesis does not quantitatively reproduce the
correct Pr dependence of the Re.

Another theory by Shraiman and Siggia@4#, which is suc-
cessful in predicting the 2/7 scaling of Nu in the planar ge-
ometry, rests on the assumption that the boundary layers are
turbulent with a logarithmic velocity profile. In the present
simulations, the Reynolds numbers of the velocity boundary
layers are always less than 15. Thus it comes as no surprise
that the Pr dependence proposed in Ref.@4#
~Re/ln Re}Pr25/7! is not verified in our numerical results.

Both Ref.@3# and the theory by Shraiman and Siggia pre-
dict a Nu monotonically decreasing with an increasing Pr at
a constant Ra, which we do not observe numerically@13#.

Finally, we consider the mixing length theory by Kraich-
nan @14#. According to this theory, Nu goes as Pr1/3Ra1/3 at
low Pr and as Ra1/3 ~independent of Pr! at high Pr, whereas
Re varies as Pr25/9Ra4/9 at low Pr and as Pr22/3Ra4/9 at high
Pr. These relations are restricted to a Ra low enough so that
the velocity layers are not turbulent and do not develop a
logarithmic profile. The distinction between ‘‘low’’ and
‘‘high’’ Pr arises from the relation between the thicknesses
of the viscous and thermal boundary layers: At ‘‘low’’ Pr,
the viscous boundary layer is thinner than the thermal one.
The crossover was somewhat arbitrarily expected to occur at
Pr50.1. Qualitative agreement is found with our simulations
in the sense that Nu indeed rises at low Pr and reaches a
constant level at a high Pr, and Re decreases more slowly
with increasing Pr at a low rather than at high Pr. The sepa-
ration between these regimes is at Pr'1, where the boundary
layers change their hierarchy~Fig. 4!. However, just as for
the two theories discussed above, there is a quantitative dis-
agreement on the values of the exponents.

Note that the Pr at which the crossover of the boundary
layer thicknesses occurs depends on Ra. At a constant Pr, the
boundary layer thicknesses decrease with increasing Ra~Fig.
5!. This is expected because of the increase in Re and the Nu.
The thermal boundary layer thickness is however decreasing
faster than the viscous one. A crossover occurs at a Ra which
is smaller for a larger Pr~Fig. 5!. This can be rationalized as
follows: The maximum of the azimuthal velocity fluctuation
locates the beginning of the region in which advection be-

comes important. For a small Pr, thermal diffusion is more
capable of keeping pace with advection and the thermal
boundary layer may extend further into the bulk of the shell.

At the onset of convection, the most unstable mode is
described by the spherical harmonic of order 3 which corre-
sponds to three pairs of convection rolls in a meridional
cross section. Furthermore, the ratio 2p,r./d'7.3, where
^r &/d57/6 is the mean of the inner and outer radii of the
shell. Based on the number of rolls and the effective aspect
ratio of the shell, it seems appropriate to compare the nu-
merical results with the experimental data from a cell of
aspect ratio 6.7@9,10# ~Fig. 1!. In cells of smaller aspect
ratio, a Ra larger than 43107 is required in order to observe
Nu}Ra2/7. Unfortunately, no experimental velocity measure-
ments are available for the cell of aspect ratio 6.7. It has
however been reported@9# that the Reynolds number scales
at a high enough Ra at Pr50.7 in cells of aspect ratio 1 and
0.5 as Ra0.485 and Ra0.49, respectively. A Nu}Ra2/7 depen-
dence was also obtained in numerical simulations of plane
layers with periodic lateral boundary conditions@15,16#.

Comparing the spherical model at Pr51 with the experi-
ments@1,3,9,12#, the most striking feature remains that the
2/7 scaling of Nu is not observed, whereas the Reynolds
number still scales the same; the Re scaling appears to be
more sturdy. Plumes are accelerated in the bulk, i.e., away
from the boundaries. Nu is, however, determined by the heat
flux which has to transverse the boundary layers. It thus
seems plausible that the Re scaling is less sensitive to the

FIG. 5. Variation of the normalized boundary layer thicknesses
D/d with Ra at Pr51 ~upper panel! and 10~lower panel!. Symbols
are the same as in Fig. 4.
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boundary geometry than the Nu scaling. It cannot be ruled
out that the 2/7 scaling of the Nu will be recovered at yet
higher Ra.

In summary, thermal convection in spherical shells has
been studied. Both the spherical model and the non-
Boussinesq convection exhibit asymmetric boundary layers;
however, differences between these flows have been pointed
out. Theories predicting the 2/7 exponent observed in the
Nu~Ra! dependence in the ‘‘hard turbulence’’ regime of con-
vection yield a Pr dependence which is qualitatively different
from the one observed in the spherical model. The present
work should therefore provide an incentive to systematically
study the Pr dependence at a high Ra in Cartesian geometry

as well. A qualitatively correct picture of the Pr dependence
is given by a mixing length theory. It should be noted that
the observed Pr dependence of Re is stronger than any of the
theories considered above predicts. The dependence of Nu
on Ra is modified compared with the one observed in experi-
ments, but the Re~Ra! scaling remains unchanged. This sec-
ond scaling is more robust and thus possibly more funda-
mental than the 2/7 law.

The author wishes to acknowledge F. H. Busse for useful
discussions. This work was supported by the ‘‘Deutsche For-
schungsgemeinschaft’’~DFG!.
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